3.14 \(\int \text{csch}^2(c+d x) (a+b \text{sech}^2(c+d x))^2 \, dx\)

Optimal. Leaf size=50 \[ -\frac{2 b (a+b) \tanh (c+d x)}{d}-\frac{(a+b)^2 \coth (c+d x)}{d}+\frac{b^2 \tanh ^3(c+d x)}{3 d} \]

[Out]

-(((a + b)^2*Coth[c + d*x])/d) - (2*b*(a + b)*Tanh[c + d*x])/d + (b^2*Tanh[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0622623, antiderivative size = 50, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {4132, 270} \[ -\frac{2 b (a+b) \tanh (c+d x)}{d}-\frac{(a+b)^2 \coth (c+d x)}{d}+\frac{b^2 \tanh ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^2*(a + b*Sech[c + d*x]^2)^2,x]

[Out]

-(((a + b)^2*Coth[c + d*x])/d) - (2*b*(a + b)*Tanh[c + d*x])/d + (b^2*Tanh[c + d*x]^3)/(3*d)

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \text{csch}^2(c+d x) \left (a+b \text{sech}^2(c+d x)\right )^2 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b-b x^2\right )^2}{x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-2 b (a+b)+\frac{(a+b)^2}{x^2}+b^2 x^2\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{(a+b)^2 \coth (c+d x)}{d}-\frac{2 b (a+b) \tanh (c+d x)}{d}+\frac{b^2 \tanh ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 1.52381, size = 109, normalized size = 2.18 \[ -\frac{4 \text{sech}^3(c+d x) \left (a \cosh ^2(c+d x)+b\right )^2 \left (\sinh (d x) \cosh ^2(c+d x) \left (b (6 a+5 b) \text{sech}(c)-3 (a+b)^2 \text{csch}(c) \coth (c+d x)\right )+b^2 \tanh (c) \cosh (c+d x)+b^2 \text{sech}(c) \sinh (d x)\right )}{3 d (a \cosh (2 (c+d x))+a+2 b)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^2*(a + b*Sech[c + d*x]^2)^2,x]

[Out]

(-4*(b + a*Cosh[c + d*x]^2)^2*Sech[c + d*x]^3*(b^2*Sech[c]*Sinh[d*x] + Cosh[c + d*x]^2*(-3*(a + b)^2*Coth[c +
d*x]*Csch[c] + b*(6*a + 5*b)*Sech[c])*Sinh[d*x] + b^2*Cosh[c + d*x]*Tanh[c]))/(3*d*(a + 2*b + a*Cosh[2*(c + d*
x)])^2)

________________________________________________________________________________________

Maple [A]  time = 0.037, size = 91, normalized size = 1.8 \begin{align*}{\frac{1}{d} \left ( -{a}^{2}{\rm coth} \left (dx+c\right )+2\,ab \left ( -{\frac{1}{\cosh \left ( dx+c \right ) \sinh \left ( dx+c \right ) }}-2\,\tanh \left ( dx+c \right ) \right ) +{b}^{2} \left ( -{\frac{1}{\sinh \left ( dx+c \right ) \left ( \cosh \left ( dx+c \right ) \right ) ^{3}}}-4\, \left ( 2/3+1/3\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2} \right ) \tanh \left ( dx+c \right ) \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2*(a+b*sech(d*x+c)^2)^2,x)

[Out]

1/d*(-a^2*coth(d*x+c)+2*a*b*(-1/sinh(d*x+c)/cosh(d*x+c)-2*tanh(d*x+c))+b^2*(-1/sinh(d*x+c)/cosh(d*x+c)^3-4*(2/
3+1/3*sech(d*x+c)^2)*tanh(d*x+c)))

________________________________________________________________________________________

Maxima [B]  time = 1.06326, size = 189, normalized size = 3.78 \begin{align*} -\frac{16}{3} \, b^{2}{\left (\frac{2 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} - 2 \, e^{\left (-6 \, d x - 6 \, c\right )} - e^{\left (-8 \, d x - 8 \, c\right )} + 1\right )}} + \frac{1}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} - 2 \, e^{\left (-6 \, d x - 6 \, c\right )} - e^{\left (-8 \, d x - 8 \, c\right )} + 1\right )}}\right )} + \frac{2 \, a^{2}}{d{\left (e^{\left (-2 \, d x - 2 \, c\right )} - 1\right )}} + \frac{8 \, a b}{d{\left (e^{\left (-4 \, d x - 4 \, c\right )} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-16/3*b^2*(2*e^(-2*d*x - 2*c)/(d*(2*e^(-2*d*x - 2*c) - 2*e^(-6*d*x - 6*c) - e^(-8*d*x - 8*c) + 1)) + 1/(d*(2*e
^(-2*d*x - 2*c) - 2*e^(-6*d*x - 6*c) - e^(-8*d*x - 8*c) + 1))) + 2*a^2/(d*(e^(-2*d*x - 2*c) - 1)) + 8*a*b/(d*(
e^(-4*d*x - 4*c) - 1))

________________________________________________________________________________________

Fricas [B]  time = 2.57163, size = 733, normalized size = 14.66 \begin{align*} -\frac{4 \,{\left ({\left (3 \, a^{2} + 6 \, a b + 4 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} + 3 \,{\left (3 \, a^{2} + 6 \, a b + 4 \, b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} - 2 \,{\left (3 \, a b + 2 \, b^{2}\right )} \sinh \left (d x + c\right )^{3} +{\left (9 \, a^{2} + 18 \, a b + 8 \, b^{2}\right )} \cosh \left (d x + c\right ) - 2 \,{\left (3 \,{\left (3 \, a b + 2 \, b^{2}\right )} \cosh \left (d x + c\right )^{2} + 3 \, a b + 4 \, b^{2}\right )} \sinh \left (d x + c\right )\right )}}{3 \,{\left (d \cosh \left (d x + c\right )^{5} + 5 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{4} + d \sinh \left (d x + c\right )^{5} + d \cosh \left (d x + c\right )^{3} +{\left (10 \, d \cosh \left (d x + c\right )^{2} + 3 \, d\right )} \sinh \left (d x + c\right )^{3} +{\left (10 \, d \cosh \left (d x + c\right )^{3} + 3 \, d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{2} - 2 \, d \cosh \left (d x + c\right ) +{\left (5 \, d \cosh \left (d x + c\right )^{4} + 9 \, d \cosh \left (d x + c\right )^{2} + 2 \, d\right )} \sinh \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-4/3*((3*a^2 + 6*a*b + 4*b^2)*cosh(d*x + c)^3 + 3*(3*a^2 + 6*a*b + 4*b^2)*cosh(d*x + c)*sinh(d*x + c)^2 - 2*(3
*a*b + 2*b^2)*sinh(d*x + c)^3 + (9*a^2 + 18*a*b + 8*b^2)*cosh(d*x + c) - 2*(3*(3*a*b + 2*b^2)*cosh(d*x + c)^2
+ 3*a*b + 4*b^2)*sinh(d*x + c))/(d*cosh(d*x + c)^5 + 5*d*cosh(d*x + c)*sinh(d*x + c)^4 + d*sinh(d*x + c)^5 + d
*cosh(d*x + c)^3 + (10*d*cosh(d*x + c)^2 + 3*d)*sinh(d*x + c)^3 + (10*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c))*s
inh(d*x + c)^2 - 2*d*cosh(d*x + c) + (5*d*cosh(d*x + c)^4 + 9*d*cosh(d*x + c)^2 + 2*d)*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \operatorname{sech}^{2}{\left (c + d x \right )}\right )^{2} \operatorname{csch}^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2*(a+b*sech(d*x+c)**2)**2,x)

[Out]

Integral((a + b*sech(c + d*x)**2)**2*csch(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.22173, size = 151, normalized size = 3.02 \begin{align*} -\frac{2 \,{\left (a^{2} + 2 \, a b + b^{2}\right )}}{d{\left (e^{\left (2 \, d x + 2 \, c\right )} - 1\right )}} + \frac{2 \,{\left (6 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 3 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 12 \, a b e^{\left (2 \, d x + 2 \, c\right )} + 12 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 6 \, a b + 5 \, b^{2}\right )}}{3 \, d{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-2*(a^2 + 2*a*b + b^2)/(d*(e^(2*d*x + 2*c) - 1)) + 2/3*(6*a*b*e^(4*d*x + 4*c) + 3*b^2*e^(4*d*x + 4*c) + 12*a*b
*e^(2*d*x + 2*c) + 12*b^2*e^(2*d*x + 2*c) + 6*a*b + 5*b^2)/(d*(e^(2*d*x + 2*c) + 1)^3)